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The aim of this paper is to show a new approach towards the discretization of
multidimensional conservation laws. The idea of transport associated with the solu-
tion of a scalar equation is used for the convective part of the compressible Euler
equations. A multidimensional wave structure is derived to model the acoustic part of
this non-linear system, that allows infinitely many propagation directions in the nu-
merical method. This provides the basic knowledge to construct a numerical method
that does not rely on Riemann solvers. A more general definition of the waves, to-
gether with the concept of consistency, enables the design of a number of effective,
genuinely multidimensional, methodsg 1998 Academic Press

1. INTRODUCTION

The numerical simulation of fluid flow is necessary for various applications. In c
space dimension, numerous shock capturing schemes exist to solve the compressibile
equations that model the inviscid fluid flow.

Most of the methods use the exact or approximate solution of the Riemann problem |
This is the solution of the hyperbolic conservation law with piecewise constant initial c
separated by a discontinuity. For the Euler equations and some other non-linear syste
analytic solution can be determined and is used as a building block in most of the metl
The basic idea is due to Godunow [9] but many other approaches with modifications
simplification exist, e.g., the class of total variation diminishing methods (TVD) [21]
essentially non-oscillatory schemes (ENO) [10].

This successful approach relies on the “relative” simplicity of the one-dimensional s
tion operator which has a finite number of propagation speeds. It is, in principle, pos
to define multidimensional Riemann problems with jumps across cell edges. Schultz-F
in [18] classifies 2-D RPs under the assumption that only one wave, i.e., the shock, cc
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surface, or rarefaction wave, is allowed for each discontinuity. The complexity of su
solutions and the sensitivity to the initial conditions show that it is hopeless to either find
analytic solution for arbitrary data or use these RPs to construct multidimensional meth

Similar problems arise for other approaches such as flux-vector or flux-difference spilitt
methods to adapt to multiple space dimensions. The main reason is that the multidin
sional form of the Euler equations, unlike the 1-D case, has infinitely many propagat
directions. Thus a simultaneous diagonalization of the Jacobian matrix is not possible wi
complicates a linearisation at the characteristic speeds as in 1-D.

For these reasons, the most popular solution is the dimensional splitting. The one din
sional operator of the projected equations on the coordinate axes or the hormals to the
boundaries of the control volume is used. Dimensional splitting is mostly associated w
the multiplicative version, where the 1-D operator is successively applied to each coordir
direction. The special choice of Strang-splitting allows a maximal order of two without
drastic increase of work.

The additive approach uses the “donor cell” and conservative updating. The computa
of the flux uses the same 1-D operator as in the multiplicative version but the flux
the directions of the coordinate axes is computed simultaneously, i.e., the operators
connected additively. This leads to a slight reduction of stability, which, by a reduction
the time step, or the CFL number, can be accounted for. Both approaches work surprisil
well for alot of problems regarding the amount of approximation made, i.e., that the physi
propagation directions are not accounted for.

Three different approaches have been taken to design truly multidimensional meth
Guided by the well-known behavior of the scalar conservation law, techniques were deri
to interpret this behavior as a combination of 1-D operators. The corner transport upwinc
method (CTU) introduced by Collela [3] and used by various other authors [12, 20] re
resents this behavior by a predictor-corrector time integration method. Here, the predi
step uses a different coordinate direction than the corrector step.

The conservation law package (CLAWPACK) by LeVeque [11, 14] models the sar
fact by a sequence of Riemann solutions with different initial data. Application of bo
approaches to the system case is then established by replacing the 1-D scalar operato
the corresponding operators for the system, i.e., the solution of the Riemann problem.

A third approach was initiated by Roe [16]. Here, the flux difference splitting idea
modified for the multidimensional case. On a cell vertex based grid, the fluctuation, i
the divergence of the flux, is computed for three of the vertices building a triangle. In t
scalar case, the propagation direction is unique and can be used to update the surrou
vertices in an upwinding manner. In the system case, the fluctuations have to be dec
posed and wave models are needed to distribute them in a physical way (see [15, 17
examples).

In this paper we first formulate an exact solution operator in integral form for the line
equation with constant and variable coefficients. The numerical method is then derive
a proper approximation to this operator without destroying the multidimensional charac

In the second part, we derive a multidimensional propagation operator for the sonic we
ofthe Euler equations. The Monge cone, i.e., the envelope of all characteristic hypersurfe
is used as propagation directions. This allows for infinitely many directions in the meth
Finally the transported quantities are derived which completes the numerical scheme. A
interpretation of the idea of flux vector splitting coincides with the method and generali:
the splitting approach to several space dimensions.



MULTIDIMENSIONAL UPWINDING, PART | 161

The third part of the paper summarizes the properties of the method. Necessary ¢
tions for consistency are derived for the numerical contribution or “fluxes.” They allow 1
separation of the form of the contributions from the physical intuition that generated th
From this point of view, modifications of the contributions can then easily be checked
subsequently they lead to a whole class of schemes. Some examples are given.

In Part Il [5] of this series, the simplified versions of this approach are used to extend
method to high order accuracy.

2. THE SCALAR CONSERVATION LAW

In this section we will briefly describe the idea of transport that is closely related to
exact solution of a scalar multidimensional conservation law. This was first exploited
van Leer in [13] for the constant coefficient case and investigated in detail in [8] for
non-linear inviscid Burger’s equation. Simultaneously, Collela used this idea as the basi
his approach [3] of the CTU method. The CLAWPACK method designed by LeVeque [
is also based on this idea and puts it in the framework of a solution of Riemann proble
The work of Childs and Morton [2] relates this behavior to the finite element context.

All the approaches start with the exact solution of the linear advection equation

Uu+a- vu=0
which can be formulated as
uX,t) = uX—1ta,0). 1)
In a finite volume discretisation, the average vaifién domainV, C RN is defined as

1
u'= — [uX,t, dX,
| |vi|/( »
\1

where|V;| denotes the volume &f;. For the exact solution in (1) and small time steyts
we obtain what is sometimes called the “shift and average” routine. The solid lines in Fi

Ve

FIG. 1. Propagation of exact solution.



162 MICHAEL FEY

show a finite volume discretisation with the center &gllnd the neighbor¥; — Vg. The
dashed lines reflect the shifted meshAma after timeAt. The new average ¥ collects
all the parts that have moved into the cell. If we define by

ucx, t), X €V,

F,j= /Ui (X — aAt, t) dx, with u; (X, t) = { 0 else

Vi

)

the contributions from domaiy into Vj, it is clear from the picture, that the average value
in Vp after timeAt is given by

uptt = m(Foo—i- Fs0+ Fs0+ F7,0).

Thus, for any cell we get

u{‘“:ﬁ Z Fii= Z (Fi,j — Fji), 3)

| eNGB() | jeia)

where we indicate the neighborhood of dellising the termNGB(i), whereNGB(i) =
{jlj #i, \/I N \/I # ¢} denotes the set of all neighboring indices &@B(i) = NGB(i)
U{i}. The second representation of the update in (3) is written as a “flux” difference a
yields a conservative method. In comparison, the dependencies for the donor cell appr:
are sketched in Fig. 2. Flux is computed across interfaces only.

In contrast to the approaches by Collela and LeVeque, where the situation in Fig.
interpreted by one-dimensional operators, we will continue to use the multidimensio
representation in (2) and (3) from above. In a more general setting we will allow varial
coefficients. The equation becomes

U+ V- @ua) =0, (4)

where the divergence operator acts on the rows. Formulation (4) is more convenient w
moving to systems.

Vs Vi |V
NS0 . o
iw v
B S /7 S -
| 1V 7

FIG. 2. Dependencies for “donor cell” approach.
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To use this approach for non-linear equations, we also have to consider the linear
with variable coefficients. The characteristic curves are then no longer straight lines an
solution is no longer total variation diminishing. With the definition of the funchgi )
as the solution of the ODE

d .. ool - o o
EZ(X’ ) = a(Z(X, 1)) and Z(X,0) =X (5)
as initial value, we can express the behavior of the exact solution governed by
d __ R N
aU(Z(X, ), 1) = —u@X, 1), )V -a@X, 1))

in terms of an integral as

Ut + At) = /u(y, 08X — Z(J, Ab) Y. ©6)

RN

For Lipschitz continuoug, (5) has a unique solution for all times and (6) is a representati
of the exact solution of (4).

For discontinuous, resulting from the approximation of a non-linear equation wit
piecewise smooth functions, we define

U t, At = / U (3, DX — 7 (5, AD) d, @

RN

whereZz denotes the solution of (5) for the smooth velodtycontinued beyond the cell
boundaries of domail;.
The fluxF; ; is given as

Fi= [ [ w056 -2 av) dya ®

Y

and the new cell average can be computed as in (3). In smooth regions of the solution E
collapses to (6) and the calculation of the flux in (8) reduces to a projection step.

Hence, by approximating (5) and (7) with the proper accuracy, a numerical metho
formally any order can be derived. The use of high order reconstruction together with |
order integration and quadrature rules lead to the desired accuracy. One advantage
approach is that the “physics” is captured independently by the characteristic propage

Figure 1 suggests that the method is stable as long as the transported quantity rel
within the neigboring cells. This defines the maximum time gtégrom

Atg;
max _a,‘ =CFL<1
i AX;
fora = (ag,...,a,)" the velocity and(Axy, ..., Axy)' the spacing. Ifa depends on

space, th&€FL-number needs to be the supremum ovek ail the computational domain.



164 MICHAEL FEY

3. MULTIDIMENSIONAL PROPAGATION FOR THE EULER EQUATIONS

In this section we derive the propagation process for the Euler equations. In cont
to other approaches that are based on the approximation with 1-D operators, we se
multidimensional representation similar to the one for the scalar equation in the previ
section.

The shift or propagation process as defined in (1) and (7) heavily use the uniquer
of the propagation direction for each point, in this casé simple extension to systems
is possible if they have a finite number of characteristic speeds. This is the case if
full system can simultaneously be diagonalized, which is true by definition for any or
dimensional hyperbolic system. The well-known flux-vector and flux-difference splittir
methods are applications of this fact.

Only very few systems retain this property in several space dimensions. Most of the
like the Euler equations, are not simultaneously diagonazable, i.e., the Jacobian mat
of the flux in each of the coordinate axes cannot be diagonalized with the same matrix
this section we will focus on the propagation first, i.e., the extension of (5) and (7) for t
case of infinitely many directions. For this we assume that we know the quantities to
propagated. We postpone their derivation to the next section.

The theory of characteristics provides some information on the behavior of the soluti
The characteristic hypersurfaces, extension of the characteristic curves in 1-D, are def
suchthatan interior operator on the hypersurface can be constructed. Basically, this proy
information on the evolution of planar perturbations. Point-wise perturbations propag
along the envelope of all hypersurfaces of the same family.

The Euler equations have two of these envelopes: first, the so-called Monge cone
sulting from the “acoustic” family, associated with the eigenvaIElesﬂ +c. Thisis a
true hypersurface unifying infinitely many directions. Second, the envelope of all advect
hypersurfaces, associated wkh T, collapse to a single line, the center of the cone. The
situation for two space dimensions and time is sketched in Fig. 3. The vedeotes the
space-like normal of the characteristic hypersurfaces.

For the second envelope with a unique propagation direction, the flow speexican
directly use the derivation for the scalar equations.d.€t, t) = w(U(X, t)) be one of the
components that are propagated with velogity he functional dependence betwegand
the vector of conserved quantitiglswill be derived in the next section.

acoustic envelope

onvective envelope

A -

A At
0 x

FIG. 3. Forward Monge cone and domain of influence for a perturbation at poimsspace-time.
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Similar to (5)
Z(U, X, At) = X + UAt 9)

isthe approximation of the characteristic curve for a given velocity fighd,t) = G(U (X, t)).
We define

U AD = [ (308K~ U5, ) 6§
RN
as the time evolution ab in celli along the characteristic curve (9). Contributions to th
neighboring cells are defined as

FY, = / o (U;, %, Aty dR, (10)
Vi
whereU; denotes the values in céll
For the sonic waves the situation is different. This envelope is a true hypersurface
infinitely many propagation directions, assuming thais a quantity that is transported

according to the Monge cone. Each point on this cone inthig plane with the tip in¥, 0)
can be reached by

Z(U, X, t,A) = X + t(U + fic), (11)

where the quantitg denotes the speed of sound, which will be explained in more detail in
next section. The vectdrdenotes a point on the unit sphe&d@). Lacking information, we
distribute the quantitw equally over all point&(U, X, At, i), i € S(1). With the notation
of the previous section we define

WU, K, AL) = @//w(?,t)é()’(’—?(u,y, At, 7)) dyds (12)

S rN

Then,w®(U, X, At) is the collection of all contributions in space, such that there exist
vectorii € S(1) with Z(U, y, At, i) = X. The delta function searches backward in time fc
all pointsy, that have a contribution toafter timeAt.

For reasons that will become clear in the next section, we need the propagation
vector valued function in a given direction. LétX, t) be a given vector field at timte We
define

1 oo e m ot o o e
% (U, X, At) = S| / /w(y, t) - As(X — Z(U, y, At, 1)) dyds (13)
S gN

as the collection of all vectorn$ generated &, projected ontas(y, t) and propagated to

Z(U, y, At, ii). The situation is slightly simpler if we assunieto be independent of the

space variable in a cell as it would be in a piecewise constant representation. Then, |
no influence on the integration and we get

1
o> (U. %, At =&-7//ﬁ6>”<—2u, 7. At.R)) dyds
( ) w1/ X — U, V. At, A)) dy
R

Theintegrals are the collection of all vectdrgenerated gtthat propagated @U, y, At, i).



166 MICHAEL FEY

FIG. 4. Functionw® = H; with V; the center volume.

According to the scalar case and (10) the contributions from one cell to the neighbor
cells are given as
Fe, = / (UL % ADAE  and  FS = / W (UL % ADAR. (14)
Vj Vj

Figure 4 shows the behavior af starting with the characteristic functid# onV; at
timet = 0 for w. The dark lines represent the original rectangular mesh. In addition to t
constant motion, the wave changes its shape and growsatitim all directions. The flux
is given by integrals over the parts leaving dom¥éiras sketched in Fig. 5.

Similar to the scalar case, a direct relation between the neighboring cells exists.
underlying grid only influences the shape of the waves and not their propagation directic
Note that the final method uses a shift and average approach as in the scalar case
information traveling along characteristic curves is not used to construct the solution
in the contents of characteristics, but to compute the contributions from one domain tc
adjacent domain. This retains the finite volume and conservative character of the me
which allows shock capturing.

What is left is the definition of» andd, i.e., the quantity that is actually transported by
these processes.

4. THE TRANSPORTED QUANTITIES

What remains to be determined is the actual choicef@spectivelyo in Egs. (6), (12),
and (13). The reader who is only interested in the results may skip to Eq. (17) where
full formulas are given.

FIG.5. Contributions from the center cell to its neighbors.
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For the derivation of the transported quantities we take a closer look at the flux-ve
splitting approach. The multidimensional system can be written as

U+ V-EU) =0,

Here,U denotes the vector & + 2 conserved quantities afkdthe (N + 2) x N matrix of
the multidimensional fluxN is the dimension of the space. Again, the divergence acts
the rows ofE.

Since the flux-vector splitting uses a 1-D operator, i.e., the Jacobian of the proje
multidimensional fluxt onto a given directiomm, we can restrict our investigation to the
1-D case, keeping in mind that the results are needed for all vettonsthe unit sphere
S().

In 1-D, the fluxF(U) = E(U) becomes a vector and is given as

pu o
FU = pu?+p |, withU={ pu
u(E + p) E

andp = (y — 1)(E — pu?/2), the equation of state. In this notatigmdenotes the mass
density,u the velocity,E the total energy, ang@ the pressure of the fluid.
The homogeneity of the fluk allows us to write it as

F(U) = RAR'U.

The matricesA of the eigenvalues arid of the right eigenvectors can be computed as

u—c 0 0
A =diagAy, Ao, A3) = 0 u 0 ,
0 0 u+c
(15)
1 1 1
R=(rq,rp r3) = u—c u u4c

H—-uc /2 H+uc

with ¢, the speed of sound artdl the specific enthalpyyl = (E + p)/p. Itis related to the
other quantities bg? = yp/p in the ideal gas case. It turns out that the veetdras a very
simple structure

1 o1
a:R—1U=2i 20 -1 | = | @
4 1 a3
With the trivial relation
U=RR U

we are able to decompose the state veldtand the flux- as

3 3
U=RR U= ar., FU =RARU=) («r)\.
i=1 i=1
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U
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Atu luzrz
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Ot3r3
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FIG.6. Decomposition ofJ at timet, and transport with characteristic speed. The gray region has passed t
cell boundary from left to right during timi, ; — t,. Only the right-going flux is indicated.

Thus, the flux can be computed by expandihgn terms of the eigenvectors and then
transported with the corresponding characteristic speed. This behavior is sketched in Fi
As we have seen in the previous section, the second eigenvalue causes no trouble i
transition to several space dimensions, since the envelope of all characteristic hyper-sur
collapse to a line. IR we define the vector
0
R2 = )/——1 ,Ol_j
Y \pluR/2

and move each componenti®$ as a scalar quantity described in Sections 2 and 3.

The two distinct acoustic waves propagating with speedand A3 will become the
surface of the Monge cone and thus be connect®MnN > 2. The connection of these
waves can be recognized in the 1-D case. The two eigenvegtarslr ; are almost equal,
except for parts with an opposite sign. The positive part,(egr,; + asrs)/2, is distributed
equally in both (all) directions. This is the behavior we assumed for the process build
°. The choices fow in (12) are the components of

1
Ri=21(
¥ \H

The part with the opposite sign, i.€gsrs — «1r1)/2, always has the same sign as
the speed of soundin u & c. Thus, it points in the same direction as the sonic spee
We associate this quantity with the process (13) generating The multidimensional
extension ofasrz — airy)/2is

pc (©
L= L (16)
=T

14

with Lthe N x N identity matrix. The rows oL are used in (13) fo@> to computen®.
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We now derive the full formulas for the numerical method. The veRtois used in the
advection process in (6). We define as the advection wave

U (%, t, At) = / Ra(Us (3, 1)3 (% — (U, 3, Ab)) dy (17)

Vi

with Z'(U, ¥, 7) solution of

3, i S B}
Eﬁ(U,y,r)=ui(£(U,y,r),r), %'(U,y,0) =Y. (18)

The functionz in (9) is a first order approximation of (18).
The vectorR; is propagated according to (12) and the first acoustic wave is defined

Cﬁ(i,t,At):@//Rl(Ui(y,t))8(>Z—2F(U,§/, At, i) ds dy, (19)
S Vi

whereZ (U, ¥, 7, ii) solves

9 e
54Uy T =0 (F U, Y. 70, 7) +1ic (ZU. Y70, 7)., 2,50/ =y
(20)

The index indicates the relation of all quantities to the solution within &Nvith smooth
extensions ofi andc to computez but not inR; andR..
Using the same hyper-surface in (20) the second acoustic wave becomes

Cr (X, t, At):|s?—l)|//L(Ui(y,t))-ﬁa(i—f(u,y At,f)dsdy.  (21)
S Vi

The constang needs to be determined through use of the consistency requiremer
Section 5U; (X, t) denotes a piecewise smooth reconstruction of the solution from the ¢
averagedJ! in cell V; at timet = t,, i.e., Ui (X, tn) is an approximation of; (X)U(X, tn)
whereU (X, t,) is the exact solution ang (X) the characteristic function of domalf.

The contribution from domail; to one of its neighbor¥; can be computed as

Fij=F' +F1+F7,

where
F!, = /ui(i,t, Atdx, F= /cﬁ(i,t, AYdx,  Fj = /C((i,t, At) dX,
(22)
and the update to the next time slice is given as
Urt=ul—— > (Fij—Fp.
| i | jeNGB(i)

The formulas are quite cumbersome to compute in this general setting. For the i
mentation one starts with a piecewise constant approximation for the funttjorst,)
which allows the analytic integration of (17), (19), and (21) (see Section 6 for more det
and relation to existing schemes).
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5. CONSISTENCY

Finally, the consistency of the derived discretization has to be checked. This will be dc
in a more general setting to allow for modifications of the waves. It should be as simple
in the 1-D case. For one spatial dimension, a method is called consistent with the gover
equations

U +F(U)x =0

if the numerical flux—,um(UL, Ur) given for the left and right staté$, andUg equals the
physical fluxF(U) forU = U = Ug, i.e.,

F(U) = Frum(U, U).

This, together with a conservative discretization leads to a consistent method.

A comparable criterion will be given for the multidimensional waves derived in Sectiol
3 and 4. With the same assumption as in 1-D, a uniform solution, the fund@gri?,
andL depend only on the state vectdrand decouple from the spatial variation which is
contained in thé-function. The generalized structure of the waves is

U = R, f9(U;, %, AD)
Ci+ = Rl fic(Ui 3 Xv At)
Ci_ = L(U|) . ﬂC(Ui 5 )zv At)

for given functionsf“, f;¢, and f:c.

[
SinceR; andR; are chosen such theb(U) + R (U) = U, a necessary condition is that
u.c oC . . L .
f;"" and f; build a decomposition of the state vectdinitially, i.e.,

» 1, XeV oo
fi“’°(U,x,0)={0 ZI:G' and  f;(U,X 0 =0.

To capture the steady constant solutidgX, t) = Uo for all time, we need

Z fiu’C(Us b)) =1, Z f_;C(U7 X, 1) =0.
i

Summation is over all cells and the conditions have to hold fax adlthe domain and for
all timest. This shows thatf" and f ¢ need to be partitions of unity. There are two more
necessary assumptions that relate the waves to the physical flux.

(a) the centers of mass of the functiofl§ ¢, and| fq°| move with velocityd, i.e.,

1
_SU’C(T) = m /)? fiu’C(U, X, 7)dX = éuc(O) + (V)
i
BN

§(r) = ﬁ /2| ﬂ°(u, X, )| dX =57 (0) + tU(V)
I
]RN
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(b) the integration off © along one of the cell normafsgives

/R 50, ¥ (At) + hk, Aty dh = Atc.

The first point reflects the fact that the functiofts® and f* have to follow the mean stream
velocity which is fulfilled by construction. All propagation processes in Section 2 have
mean flow velocityi as basic ingredient.

The second point determines the amplitud@%&nd thus the constagtin (21), since the
average off always gives zero and cannot be used for this task. This amplitude is rel
to the presssure part in the flux. Assuming piecewise constant data, the second ac
wave in (21) simplifies to

Cr (x,t,At)—@L(U) //nB(X—At(u+nc))dsoy
SH Vi

Thus, for the derived methofi” has the form

—c q Lo L
f (UX1)=—— //ns(x— (U + nc)) ds dy,
IS(D)] ¥
S Vi
which in two space dimensions and in the dom@in, (see Fig. 7) reduces to

X—tU—Xj+1/2
f*C(U’y(,r):i< 1- (7% />>

0

Applying condition (b) withk = (1,0)" thex-coordinate axis, we get

00 1
N - At
/[fch(u,ﬁ%r) +hk, 7)dh = ziAtc/\/l— h2dh = 721
T .
0 -1

27

which shows that] = 2 is the correct choice. Fd¥ space dimensions, it turns out that
g = N is the proper choice which also fits for = 1.

This condition implies that the generated numerical flux in the coordinate direction
consistent with the physical flux, i.e., for two space dimensionskith (F1, F2) we have

AtAYyF1 =F13+Fos+Fs3—Fo0—Fzo—Fapo
AtAXF; = F71 4+ Fo1+ Fs1 — Fgo— F10 — Foo.

Notation of the volumes and fluxes is as in Figs. 1 and 7.

6. MODIFIED WAVES

The disadvantage of the above approach is the large amount of computational
necessary to compute the contributions. Figure 7 shows the support of the fuf€tiol
andf* which needs to be divided into a number of subdomains, each with a differ
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Vi
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. Ga2.4 A
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G4,4 G4.] ;
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& Gas Ol Gy Vs
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At Y,
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FIG. 7. Support and subdomains for the functioffsand in (23).

representation of the functions. For convenience and to reduce the number of indices
move to a local numeration of the domains. The control volumes are deno¥dftrythe
center cell with indicesi(, i), Vi1 the upper cellig, i, + 1) and the rest follow clockwise.
Note that in most of the previous equatiandenotes a multi-index.

The domaingG are ordered according to their complexity (in the first version)Gin
the function is constant, i, there is only one independent variable anddp and
G4 the functions depend on both andx,. Subsets are nhumbered clockwise such tha
Gk = U; Gi-

Since the Monge cone enters into the propagation process (12) and (13) one can n
the circular subdomains and intersections with rectangles. Even though the integratic
quite cumbersome, it can be done analytically. As an example, we give a representatic
f ¢ for some subdomains:

1 X — Atu — X; o
Zarccod T~ A2 if X e Gyy
T Atc

1 X — AtU — Xj11/2 y — Atv — Yjq12 T -

f¢={ ~(arccod 2=~ T+1/2 arccod = —— T2 ) T XeG
2 Atc + Atc 2 81
1 X — AtU — X; — Atv —y; -
— | arcco —|+1/2 + arcco w -7 X e G4.l,
T Atc Atc
(23)

In this section for convenience we use the notatioa (x, y)" and = (u, v)" for the
space and velocity vector 1,2, Yj+1/2) " denotes the upper right corner of a cell. Figure €
shows one possible example for the computation of the contribution to one of the diagc
neighbors.

The functionsf¢ and f are continuous with the direct consequence that the contrib
tionsF¢ andF°~ in (14) are differentiable. The wave" is discontinuous with the resulting
contributionF" being only continuous. The influence of this non-differentiable flux is nc
as severe and reflects the existence of a contact surface, which also only allows a contin
flux.

The functionsf" and f ¢ share the same properties for consistency. Thus, repldcing
by f€in (23) leads to a consistent scheme with a differentiable flux.
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Yi+1/2

é; atu' ate b
Tit1/2

FIG. 8. Integration intervals and shape of domains to compute contrib&fjon

Next, we derive functiond ¢ and f* that are much simpler and will drastically reduce
the amount of computational work. In the spirit of the van Leer flux vector splitting, we L
ansatz functions that are piecewise constant, linear, or bilinear. The constraint, to bu
partition of unity, defines the functioh® completely. For example,

Xit1/2 + At(U+C) — X

if Xe G
o _ 2Atc € w2l (24)
' Vs + AtW4C) — Y Xis1o+ AtU+C) —X . _
if Xe G31
2Atc 2AtC

is a linear function along the edges and bilinear near the corners. The function in the c
domainsG,; can be found by symmetry arguments, and in the dom@g)sthey are the
product of the two functions in the adjacent domains. The second constraint on consi
waves defines the functiofi . To keep the contributions differentiable we také= f°¢
as mentioned previously. Figure 9 shows the support for these choices of waves whic

Vi
Ve v
. Ga.4
3.4 Gs.1
wl % |
L G 0 Gs.
v, e 21
G G
3.3 G’g‘g 3.2
Atu
Ve Vs Vi

FIG. 9. Support and subdomains for the functioffsand in (24).
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FIG. 10. Functionf®in (24) for At = 0.4AXx/c.

now all rectangles. Figure 10 sketches the shapé of his defines a much simpler method
with all of the properties of the original version in (23).

Going even further and allowing only piecewise constant ansatz functions on rectang
domains, i.e., the same decomposition of the support as in Fig. 9, leads to the follow
representation of Y and f¢:

1 if X (S G]_
q 1 if X — Atl € V; 1 if X e Gy
Ul — i ) v ty—Jd 2
it X b {o else o XD =01 e, O
0 else

We omit the representation df° (for more details see [4, 6, 7]). This is the most efficient
method in terms of computational work. It is only 10-20% slower than a van Leer or Ste
Warming flux vector splitting method in the donor cell approach and equally fast in t
multiplicative operator splitting approach.

Note that for a grid aligned 1-D problem, the method witln (24) is close to the van
Leer scheme whild in (25) gives exactly the Steger—Warming splitting [19].

7. NUMERICAL EXPERIMENTS

The numerical methods derived in the previous section has been tested on a numb
problems. The three different versions led to no visible difference in the problems c
sidered. Thus we will show only one of the results. To compare with existing metho
solutions were computed using the Van Leer method with dimensional splitting. Since b
methods are of first order, there are only small differences in most of the examples v
weak shocks or rarefaction waves. For shock-shock interactions and strong oblique shc
larger differences can be recognized. Especially noticeable is the influence of numel
viscosity generated by the dimensional splitting. We denote with (MoT) the derived mett
of transport, and with (VL) the Van Leer flux vector splitting method.

The first example is a two-dimensional Riemann problem. As initial conditions, v
choose constant states in each quadrant. Neighboring quadrants are connected by a <
wave, in this case by two slip lines and two rarefaction waves. The initial conditions are

o = 0.5197, p = 0.4, u=-0.6259 v=01 ifx<0,y>0
o = 0.8, p = 0.4, u=0.1, v=01 ifx>0y>0
o =10, p = 1.0, u=20.1, v=20.1 ifx<0,y<O

o = 05197 p = 0.4, u=01, v = —0.6258 ifx >0,y <O.
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The Cartesian grid used has 4QG100 points. The shock thickness, in Figs. 11 and 12 ft
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L

FIG.11. MoT, Min., 0.2795.

the MoT and VL, is nearly the same.

The next example includes two weak shocks and two slip lines. The initial conditions

p =0.5313 p=04, u= 0.0, v=0.0
p =10, p=10, u=0.7274 v=00
p =038, p=10, u= 0.0, v=00
p =10, p=10, u = 0.0, v=0.7276

A second look at the results (Figs. 13, 14) shows differences in the structure of the st
The solution of the multidimensional method (Fig. 15) can be interpreted as two M
reflections and two contact surfaces at the intersection of the four shocks. VL shows
curved shock connected with two others. The density contour lines are circular anc
gradient varies only slightly. In the solution of MoT a small density valley moves up to

intersection point.

1.0

05

0.0 =

-0.5

L

-1.0 -0.5 0.0 0.5 1.0

FIG. 12. VL, Min., 0.271.

ifx<0,y>0
ifx>0,y>0
ifx<0,y<O
ifx >0,y <O.
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1.0

M B
0.5 1.0

FIG. 13. MoT, Max., 1.721.

There is no exact solution to this problem. However, a qualitative result can be obtail
using shock polars [1]. Since the solution is symmetric with respect to the liney and
self similar, the transformation

X’=;§(X+y)+st, y’=j§(y—X)

puts the shock-shock interaction point at restj&the speed of the shock between quadran
1 and 3. Since the shock speed is determined from the one-dimensional problems,
constantin time. Hence, we can use the model of shock reflections as a first approxima
It turns out that, for an angle of 45there is no regular reflection. The highest possible
angle for these conditions is 40,8vith a density of 1.835 behind the reflected shock, i.e.
a situation as in Fig. 14. Using the4&ngle of incidence, we obtain a Mach reflection with
a density of 1.66 behind the reflected shock and 1.52 behind the Mach stem [1]. This se
to indicate that the solution obtained with VL is not well resolved for the same number

0.5 1.0

FIG. 14. VL, Max., 1.820.
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FIG. 15. Enlargement for MoT and VL.

points as MoT that shows the proper behavior. Note that all high order methods prodt
result as in Fig. 13.

The spacing\p of the iso density contours in the first example (Figs. 11, 1&)is= 0.02.
In the second example (Figs. 13—-15) we uggd= 0.04.

The last two examples show steady shock reflections. First, we show the solution fo
weak Mach 1.4 shock in [3]. The domain is2, 2] x [0, 1] and we use 6& 20 points.
Figure 16 shows the density yt= 0.525. Note that the diamonds in Fig. 16 represent tt
solution obtained by MoT and show a sharper shock profile than VL. This is surpris
since VL has less numerical viscosity than the Steger—Warming method. Figure 17 sl
the steady shock profile for the first jump if aligned with the grid. For this 1-D proble
MoT is more diffusive than VL as we would expect. This indicates that the dimensio
splitting approach introduces more numerical viscosity than the unsplit method.

The last problem includes a strong Mach 10 shock. The values of the analytic solt
are shown in Table 1. The domain in this problem-sl[73, 4.07] x [0, 1] with a grid
120 x 20 points. This puts the shock reflection point in (0},.0fhe observed increase of
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FIG. 16. Comparison of the density profile for the reflection problem alongyire0.525 <, MoT; o, VL.
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FIG. 17. 1-D density profile for normal shock.

FIG. 19. Density profile for the Mach 10 reflection problem along lne- 0.0; <, MoT; o, VL.
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TABLE 1
Quantity Left Middle Right
P 1.0 5.714285714285714 18.18385326582769
o] 1.0 116.5 748.0377039786476
u 23.66431913239847 18.78355331134129 16.70442203362488
v 0.0 —8.453734381916670 1.8e-14

numerical viscosity for VL is more pronounced than in the previous example. Close to
wall, the method is not able to recover the correct jump condition in a reasonable am
of points. We observed the following difference between MoT and VL. Here, MoT sho
a much better behavior. The lack of stability for the donor cell approach shows up in
example so that the time step has to be reduced. For comparison, both calculations
done with the reduced time step. This is not necessary for MoT. The solution is the s
even withCFL = 0.95. Since the methods used are of first order accuracy only, the obtai
results are not very conclusive. Note on the other hand that all high order methods
use flux- or slope limiters reduce to a first order method close to discontinuities. Thu
better resolution of multidimensional effects is of importance even in the first order p
The influence of the corner contributions is essential for a good representation of st
shocks, as the last two examples indicate. They are of second order only in regions
the solution is smooth.

8. CONCLUSIONS

The method of transport is described by means of the shift and average interpretatior
the scalar equation, this truly multidimensional method can naturally be extended to
order—in contrast to other approaches—where corrections are needed [3] or the stru
and velocities of high order waves need to be different from the first order waves [11].

For the case of the Euler equations, a new set of multidimensional waves has
developed to model the physical properties of the linearized equations. Sufficient condif
on the waves are given to ensure the consistency of the numerical method. Three po
modifications have been given to improve some aspects of the original versions. The
version in particular is competitive to other approaches.

Note thatR;, Ry, andL are given functions dfl so that no Riemann problem solution is
required. This simplifies the extension to other systems and allows an application eve
those systems where the construction of Riemann solutions is difficult, i.e., in geomet
optics or magneto hydrodynamics.

With this information, we are able to construct a mathematical formulation in [5] tt
shows the extension to high order accurate methods.
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