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The aim of this paper is to show a new approach towards the discretization of
multidimensional conservation laws. The idea of transport associated with the solu-
tion of a scalar equation is used for the convective part of the compressible Euler
equations. A multidimensional wave structure is derived to model the acoustic part of
this non-linear system, that allows infinitely many propagation directions in the nu-
merical method. This provides the basic knowledge to construct a numerical method
that does not rely on Riemann solvers. A more general definition of the waves, to-
gether with the concept of consistency, enables the design of a number of effective,
genuinely multidimensional, methods.c© 1998 Academic Press

1. INTRODUCTION

The numerical simulation of fluid flow is necessary for various applications. In one
space dimension, numerous shock capturing schemes exist to solve the compressible Euler
equations that model the inviscid fluid flow.

Most of the methods use the exact or approximate solution of the Riemann problem (RP).
This is the solution of the hyperbolic conservation law with piecewise constant initial data
separated by a discontinuity. For the Euler equations and some other non-linear systems, an
analytic solution can be determined and is used as a building block in most of the methods.
The basic idea is due to Godunow [9] but many other approaches with modifications and
simplification exist, e.g., the class of total variation diminishing methods (TVD) [21] or
essentially non-oscillatory schemes (ENO) [10].

This successful approach relies on the “relative” simplicity of the one-dimensional solu-
tion operator which has a finite number of propagation speeds. It is, in principle, possible
to define multidimensional Riemann problems with jumps across cell edges. Schultz-Rinne
in [18] classifies 2-D RPs under the assumption that only one wave, i.e., the shock, contact
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surface, or rarefaction wave, is allowed for each discontinuity. The complexity of such
solutions and the sensitivity to the initial conditions show that it is hopeless to either find an
analytic solution for arbitrary data or use these RPs to construct multidimensional methods.

Similar problems arise for other approaches such as flux-vector or flux-difference splitting
methods to adapt to multiple space dimensions. The main reason is that the multidimen-
sional form of the Euler equations, unlike the 1-D case, has infinitely many propagation
directions. Thus a simultaneous diagonalization of the Jacobian matrix is not possible which
complicates a linearisation at the characteristic speeds as in 1-D.

For these reasons, the most popular solution is the dimensional splitting. The one dimen-
sional operator of the projected equations on the coordinate axes or the normals to the cell
boundaries of the control volume is used. Dimensional splitting is mostly associated with
the multiplicative version, where the 1-D operator is successively applied to each coordinate
direction. The special choice of Strang-splitting allows a maximal order of two without a
drastic increase of work.

The additive approach uses the “donor cell” and conservative updating. The computation
of the flux uses the same 1-D operator as in the multiplicative version but the flux in
the directions of the coordinate axes is computed simultaneously, i.e., the operators are
connected additively. This leads to a slight reduction of stability, which, by a reduction of
the time step, or the CFL number, can be accounted for. Both approaches work surprisingly
well for a lot of problems regarding the amount of approximation made, i.e., that the physical
propagation directions are not accounted for.

Three different approaches have been taken to design truly multidimensional methods.
Guided by the well-known behavior of the scalar conservation law, techniques were derived
to interpret this behavior as a combination of 1-D operators. The corner transport upwinding
method (CTU) introduced by Collela [3] and used by various other authors [12, 20] rep-
resents this behavior by a predictor-corrector time integration method. Here, the predictor
step uses a different coordinate direction than the corrector step.

The conservation law package (CLAWPACK) by LeVeque [11, 14] models the same
fact by a sequence of Riemann solutions with different initial data. Application of both
approaches to the system case is then established by replacing the 1-D scalar operator with
the corresponding operators for the system, i.e., the solution of the Riemann problem.

A third approach was initiated by Roe [16]. Here, the flux difference splitting idea is
modified for the multidimensional case. On a cell vertex based grid, the fluctuation, i.e.,
the divergence of the flux, is computed for three of the vertices building a triangle. In the
scalar case, the propagation direction is unique and can be used to update the surrounding
vertices in an upwinding manner. In the system case, the fluctuations have to be decom-
posed and wave models are needed to distribute them in a physical way (see [15, 17] for
examples).

In this paper we first formulate an exact solution operator in integral form for the linear
equation with constant and variable coefficients. The numerical method is then derived as
a proper approximation to this operator without destroying the multidimensional character.

In the second part, we derive a multidimensional propagation operator for the sonic waves
of the Euler equations. The Monge cone, i.e., the envelope of all characteristic hypersurfaces,
is used as propagation directions. This allows for infinitely many directions in the method.
Finally the transported quantities are derived which completes the numerical scheme. A new
interpretation of the idea of flux vector splitting coincides with the method and generalizes
the splitting approach to several space dimensions.
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The third part of the paper summarizes the properties of the method. Necessary condi-
tions for consistency are derived for the numerical contribution or “fluxes.” They allow the
separation of the form of the contributions from the physical intuition that generated them.
From this point of view, modifications of the contributions can then easily be checked and
subsequently they lead to a whole class of schemes. Some examples are given.

In Part II [5] of this series, the simplified versions of this approach are used to extend the
method to high order accuracy.

2. THE SCALAR CONSERVATION LAW

In this section we will briefly describe the idea of transport that is closely related to the
exact solution of a scalar multidimensional conservation law. This was first exploited by
van Leer in [13] for the constant coefficient case and investigated in detail in [8] for the
non-linear inviscid Burger’s equation. Simultaneously, Collela used this idea as the basis for
his approach [3] of the CTU method. The CLAWPACK method designed by LeVeque [11]
is also based on this idea and puts it in the framework of a solution of Riemann problems.
The work of Childs and Morton [2] relates this behavior to the finite element context.

All the approaches start with the exact solution of the linear advection equation

ut + Ea · ∇u = 0

which can be formulated as

u(Ex, t) = u(Ex − t Ea, 0). (1)

In a finite volume discretisation, the average valueun
i in domainVi ⊂ RN is defined as

un
i = 1

|Vi |
∫

|Vi |
u(Ex, tn) dEx,

where|Vi | denotes the volume ofVi . For the exact solution in (1) and small time steps1t ,
we obtain what is sometimes called the “shift and average” routine. The solid lines in Fig. 1

FIG. 1. Propagation of exact solution.
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show a finite volume discretisation with the center cellV0 and the neighborsV1 − V8. The
dashed lines reflect the shifted mesh by1tEa after time1t . The new average inV0 collects
all the parts that have moved into the cell. If we define by

Fi, j =
∫
Vj

ui (Ex − Ea1t, t) dEx, with ui (Ex, t) =
{

u(Ex, t), Ex ∈ Vi

0, else
(2)

the contributions from domainVi into Vj , it is clear from the picture, that the average value
in V0 after time1t is given by

ui +1
0 = 1

|V0| (F0,0 + F5,0 + F6,0 + F7,0).

Thus, for any celli we get

un+1
i = 1

|Vi |
∑

j ∈NGB(i )

Fj,i = un
i − 1

|Vi |
∑

j ∈NGB(i )

(Fi, j − Fj,i ), (3)

where we indicate the neighborhood of celli using the termNGB(i ), whereNGB(i ) =
{ j | j 6= i, V̄i ∩ V̄i 6= ∅} denotes the set of all neighboring indices andNGB(i ) = NGB(i )
∪ {i }. The second representation of the update in (3) is written as a “flux” difference and
yields a conservative method. In comparison, the dependencies for the donor cell approach
are sketched in Fig. 2. Flux is computed across interfaces only.

In contrast to the approaches by Collela and LeVeque, where the situation in Fig. 1 is
interpreted by one-dimensional operators, we will continue to use the multidimensional
representation in (2) and (3) from above. In a more general setting we will allow variable
coefficients. The equation becomes

ut + ∇ · (uEaT
) = 0, (4)

where the divergence operator acts on the rows. Formulation (4) is more convenient when
moving to systems.

FIG. 2. Dependencies for “donor cell” approach.
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To use this approach for non-linear equations, we also have to consider the linear case
with variable coefficients. The characteristic curves are then no longer straight lines and the
solution is no longer total variation diminishing. With the definition of the functionEz(Ex, τ )

as the solution of the ODE

∂

∂τ
Ez(Ex, τ ) = Ea(Ez(Ex, τ )) and Ez(Ex, 0) = Ex (5)

as initial value, we can express the behavior of the exact solution governed by

d

dt
u(Ez(Ex, t), t) = −u(Ez(Ex, t), t)∇ · Ea(Ez(Ex, t))

in terms of an integral as

u(Ex, t + 1t) =
∫
RN

u(Ey, t)δ(Ex − Ez(Ey, 1t)) dEy. (6)

For Lipschitz continuousEa, (5) has a unique solution for all times and (6) is a representation
of the exact solution of (4).

For discontinuousEa, resulting from the approximation of a non-linear equation with
piecewise smooth functions, we define

ui (Ex, t, 1t) =
∫
RN

ui (Ey, t)δ(Ex − Ezi (Ey, 1t)) dEy, (7)

whereEzi denotes the solution of (5) for the smooth velocityEai continued beyond the cell
boundaries of domainVi .

The flux Fi, j is given as

Fi, j =
∫
Vj

∫
Vi

u(Ey, t)δ(Ex − Ezi (Ey, 1t)) dEydEx (8)

and the new cell average can be computed as in (3). In smooth regions of the solution Eq. (7)
collapses to (6) and the calculation of the flux in (8) reduces to a projection step.

Hence, by approximating (5) and (7) with the proper accuracy, a numerical method of
formally any order can be derived. The use of high order reconstruction together with high
order integration and quadrature rules lead to the desired accuracy. One advantage of this
approach is that the “physics” is captured independently by the characteristic propagation.

Figure 1 suggests that the method is stable as long as the transported quantity remains
within the neigboring cells. This defines the maximum time step1t from

max
i

∣∣∣∣1tai

1xi

∣∣∣∣ =: CFL < 1

for Ea = (a1, . . . , an)
T the velocity and(1x1, . . . , 1xN)T the spacing. IfEa depends on

space, theCFL-number needs to be the supremum over allEx in the computational domain.
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3. MULTIDIMENSIONAL PROPAGATION FOR THE EULER EQUATIONS

In this section we derive the propagation process for the Euler equations. In contrast
to other approaches that are based on the approximation with 1-D operators, we seek a
multidimensional representation similar to the one for the scalar equation in the previous
section.

The shift or propagation process as defined in (1) and (7) heavily use the uniqueness
of the propagation direction for each point, in this caseEa. A simple extension to systems
is possible if they have a finite number of characteristic speeds. This is the case if the
full system can simultaneously be diagonalized, which is true by definition for any one-
dimensional hyperbolic system. The well-known flux-vector and flux-difference splitting
methods are applications of this fact.

Only very few systems retain this property in several space dimensions. Most of them,
like the Euler equations, are not simultaneously diagonazable, i.e., the Jacobian matrices
of the flux in each of the coordinate axes cannot be diagonalized with the same matrix. In
this section we will focus on the propagation first, i.e., the extension of (5) and (7) for the
case of infinitely many directions. For this we assume that we know the quantities to be
propagated. We postpone their derivation to the next section.

The theory of characteristics provides some information on the behavior of the solution.
The characteristic hypersurfaces, extension of the characteristic curves in 1-D, are defined
such that an interior operator on the hypersurface can be constructed. Basically, this provides
information on the evolution of planar perturbations. Point-wise perturbations propagate
along the envelope of all hypersurfaces of the same family.

The Euler equations have two of these envelopes: first, the so-called Monge cone, re-
sulting from the “acoustic” family, associated with the eigenvaluesEk · Eu ± c. This is a
true hypersurface unifying infinitely many directions. Second, the envelope of all advective
hypersurfaces, associated withEk · Eu, collapse to a single line, the center of the cone. The
situation for two space dimensions and time is sketched in Fig. 3. The vectorEk denotes the
space-like normal of the characteristic hypersurfaces.

For the second envelope with a unique propagation direction, the flow speedEu, we can
directly use the derivation for the scalar equations. Letω(Ex, t) = ω(U(Ex, t)) be one of the
components that are propagated with velocityEu. The functional dependence betweenω and
the vector of conserved quantitiesU will be derived in the next section.

FIG. 3. Forward Monge cone and domain of influence for a perturbation at pointA in space-time.
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Similar to (5)

Ez(U, Ex, 1t) = Ex + Eu1t (9)

is the approximation of the characteristic curve for a given velocity field,Eu(Ex, t)= Eu(U(Ex, t)).
We define

ωu
i (U, Ex, 1t) =

∫
RN

ωi (Ey, t)δ(Ex − Ez(Ui , Ey, 1t)) dEy

as the time evolution ofω in cell i along the characteristic curve (9). Contributions to the
neighboring cells are defined as

Fu
i, j =

∫
Vj

ωu
i (Ui , Ex, 1t) dEx, (10)

whereUi denotes the values in celli .
For the sonic waves the situation is different. This envelope is a true hypersurface with

infinitely many propagation directions, assuming thatω is a quantity that is transported
according to the Monge cone. Each point on this cone in the (Ex, t) plane with the tip in (Ex, 0)
can be reached by

Ez(U, Ex, t, En) = Ex + t (Eu + Enc), (11)

where the quantitycdenotes the speed of sound, which will be explained in more detail in the
next section. The vectorEn denotes a point on the unit sphereS(1). Lacking information, we
distribute the quantityω equally over all pointsEz(U, Ex, 1t, En), En ∈ S(1). With the notation
of the previous section we define

wc(U, Ex, 1t) = 1

|S(1)|
∫
S

∫
RN

ω(Ey, t)δ(Ex − Ez(U, Ey, 1t, En)) dEyds. (12)

Then,ωc(U, Ex, 1t) is the collection of all contributions in space, such that there exist a
vectorEn ∈ S(1) with Ez(U, Ey, 1t, En) = Ex. The delta function searches backward in time for
all pointsEy, that have a contribution toEx after time1t .

For reasons that will become clear in the next section, we need the propagation of a
vector valued function in a given direction. LetEω(Ex, t) be a given vector field at timet . We
define

ωc−(U, Ex, 1t) = 1

|S(1)|
∫
S

∫
RN

Eω(Ey, t) · Enδ(Ex − Ez(U, Ey, 1t, En)) dEyds (13)

as the collection of all vectorsEn generated atEy, projected ontoEω(Ey, t) and propagated to
Ez(U, Ey, 1t, En). The situation is slightly simpler if we assumeEω to be independent of the
space variable in a cell as it would be in a piecewise constant representation. Then, it has
no influence on the integration and we get

ωc−(U, Ex, 1t) = Eω · 1

|S(1)|
∫
S

∫
RN

Enδ(Ex − Ez(U, Ey, 1t, En)) dEyds.

The integrals are the collection of all vectorsEngenerated atEythat propagated toEz(U, Ey, 1t, En).
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FIG. 4. Functionωc = Hi with Vi the center volume.

According to the scalar case and (10) the contributions from one cell to the neighboring
cells are given as

Fc
i, j =

∫
Vj

ωc
i (Ui , Ex, 1t) dEx and Fc−

i, j =
∫
Vj

ωc−
i (Ui , Ex, 1t) dEx. (14)

Figure 4 shows the behavior ofωc starting with the characteristic functionHi on Vi at
time t = 0 for ω. The dark lines represent the original rectangular mesh. In addition to the
constant motion, the wave changes its shape and grows with1tc in all directions. The flux
is given by integrals over the parts leaving domainVi as sketched in Fig. 5.

Similar to the scalar case, a direct relation between the neighboring cells exists. The
underlying grid only influences the shape of the waves and not their propagation directions.
Note that the final method uses a shift and average approach as in the scalar case. The
information traveling along characteristic curves is not used to construct the solution as
in the contents of characteristics, but to compute the contributions from one domain to an
adjacent domain. This retains the finite volume and conservative character of the method
which allows shock capturing.

What is left is the definition ofω and Eω, i.e., the quantity that is actually transported by
these processes.

4. THE TRANSPORTED QUANTITIES

What remains to be determined is the actual choice forω respectivelyEω in Eqs. (6), (12),
and (13). The reader who is only interested in the results may skip to Eq. (17) where the
full formulas are given.

FIG. 5. Contributions from the center cell to its neighbors.
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For the derivation of the transported quantities we take a closer look at the flux-vector
splitting approach. The multidimensional system can be written as

Ut + ∇ · F
¯

(U) = 0.

Here,U denotes the vector ofN + 2 conserved quantities andF
¯

the(N + 2) × N matrix of
the multidimensional flux.N is the dimension of the space. Again, the divergence acts on
the rows ofF

¯
.

Since the flux-vector splitting uses a 1-D operator, i.e., the Jacobian of the projected
multidimensional fluxF

¯
onto a given directionEn, we can restrict our investigation to the

1-D case, keeping in mind that the results are needed for all vectorsEn on the unit sphere
S(1).

In 1-D, the fluxF(U) = F
¯

(U) becomes a vector and is given as

F(U) =
 ρu

ρu2 + p
u(E + p)

 , with U =
 ρ

ρu
E


and p = (γ − 1)(E − ρu2/2), the equation of state. In this notation,ρ denotes the mass
density,u the velocity,E the total energy, andp the pressure of the fluid.

The homogeneity of the fluxF allows us to write it as

F(U) = R
¯
Λ
¯

R
¯

−1U.

The matricesΛ
¯

of the eigenvalues andR
¯

of the right eigenvectors can be computed as

Λ
¯

= diag(λ1, λ2, λ3) =
u − c 0 0

0 u 0
0 0 u + c

 ,

(15)

R
¯

= (r1, r2, r3) =
 1 1 1

u − c u u+ c
H − uc u2/2 H + uc


with c, the speed of sound andH the specific enthalpy,H = (E + p)/ρ. It is related to the
other quantities byc2 = γ p/ρ in the ideal gas case. It turns out that the vectorα has a very
simple structure

α = R
¯

−1U = ρ

2γ

 1
2(γ − 1)

1

 =
α1

α2

α3

 .

With the trivial relation

U = R
¯

R
¯

−1U

we are able to decompose the state vectorU and the fluxF as

U = R
¯

R
¯

−1U =
3∑

i =1

αi r i , F(U) = R
¯
Λ
¯

R
¯

−1U =
3∑

i =1

(αi r i )λi .
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FIG. 6. Decomposition ofU at timetn and transport with characteristic speed. The gray region has passed the
cell boundary from left to right during timetn+1 − tn. Only the right-going flux is indicated.

Thus, the flux can be computed by expandingU in terms of the eigenvectors and then
transported with the corresponding characteristic speed. This behavior is sketched in Fig. 6.
As we have seen in the previous section, the second eigenvalue causes no trouble in the
transition to several space dimensions, since the envelope of all characteristic hyper-surfaces
collapse to a line. InRN we define the vector

R2 = γ − 1

γ

 ρ

ρEu
ρ|Eu|2/2


and move each component ofR2 as a scalar quantity described in Sections 2 and 3.

The two distinct acoustic waves propagating with speedsλ1 andλ3 will become the
surface of the Monge cone and thus be connected inRN, N ≥ 2. The connection of these
waves can be recognized in the 1-D case. The two eigenvectorsr1 andr3 are almost equal,
except for parts with an opposite sign. The positive part, i.e.,(α1r1 +α3r3)/2, is distributed
equally in both (all) directions. This is the behavior we assumed for the process building
ωc. The choices forω in (12) are the components of

R1 = ρ

γ

 1
Eu
H

 .

The part with the opposite sign, i.e.,(α3r3 − α1r1)/2, always has the same sign as
the speed of soundc in u ± c. Thus, it points in the same direction as the sonic speed.
We associate this quantity with the process (13) generatingEωc−. The multidimensional
extension of(α3r3 − α1r1)/2 is

L
¯

= ρc

γ

 E0T

I
¯EuT

 (16)

with I
¯

the N × N identity matrix. The rows ofL
¯

are used in (13) forEω to computeωc−.
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We now derive the full formulas for the numerical method. The vectorR2 is used in the
advection process in (6). We define as the advection wave

Ui (Ex, t, 1t) =
∫
Vi

R2(Ui (Ey, t))δ
(Ex − Ezu

i (U, Ey, 1t)
)

dEy (17)

with Ezu
i (U, Ey, τ ) solution of

∂

∂τ
Ezu

i (U, Ey, τ ) = Eui
(Ezu

i (U, Ey, τ ), τ
)
, Ezu

i (U, Ey, 0) = Ey. (18)

The functionEz in (9) is a first order approximation of (18).
The vectorR1 is propagated according to (12) and the first acoustic wave is defined as

C+
i (Ex, t, 1t) = 1

|S(1)|
∫

S(1)

∫
Vi

R1(Ui ( Ey, t))δ
(Ex − Ezc

i (U, Ey, 1t, En)
)

ds dEy, (19)

whereEzc
i (U, Ey, τ, En) solves

∂

∂τ
Ezc

i (U, Ey, τ, En) = Eui
(Ezu

i (U, Ey, τ, En), τ
) + Enci

(Ezu
i (U, Ey, τ, En), τ

)
, Ezu

i (U, Ey, 0, En) = Ey.
(20)

The indexi indicates the relation of all quantities to the solution within cellVi with smooth
extensions ofEu andc to computeEz but not inR1 andR2.

Using the same hyper-surface in (20) the second acoustic wave becomes

C−
i (Ex, t, 1t) = q

|S(1)|
∫

S(1)

∫
Vi

L(Ui (Ey, t)) · Enδ
(Ex − Ezc

i (U, Ey, 1t, En)
ds dEy. (21)

The constantq needs to be determined through use of the consistency requirement in
Section 5.Ui (Ex, t) denotes a piecewise smooth reconstruction of the solution from the cell
averagesUn

i in cell Vi at time t = tn, i.e., Ui (Ex, tn) is an approximation ofχi (Ex)U(Ex, tn)
whereU(Ex, tn) is the exact solution andχi (Ex) the characteristic function of domainVi .

The contribution from domainVi to one of its neighborsVj can be computed as

Fi, j = Fu
i, j + Fc+

i, j + Fc−
i, j ,

where

Fu
i, j =

∫
Vj

Ui (Ex, t, 1t) dEx, Fc+
i, j =

∫
Vj

C+
i (Ex, t, 1t) dEx, Fc−

i, j =
∫
Vj

C−
i (Ex, t, 1t) dEx,

(22)
and the update to the next time slice is given as

Un+1
i = Un

i − 1

|Vi |
∑

j ∈NGB(i )

(Fi, j − F j,i ).

The formulas are quite cumbersome to compute in this general setting. For the imple-
mentation one starts with a piecewise constant approximation for the functionsUi (Ex, tn)
which allows the analytic integration of (17), (19), and (21) (see Section 6 for more details
and relation to existing schemes).
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5. CONSISTENCY

Finally, the consistency of the derived discretization has to be checked. This will be done
in a more general setting to allow for modifications of the waves. It should be as simple as
in the 1-D case. For one spatial dimension, a method is called consistent with the governing
equations

Ut + F(U)x = 0

if the numerical fluxFnum(UL , UR) given for the left and right statesUL andUR equals the
physical fluxF(U) for U = UL = UR, i.e.,

F(U) = Fnum(U, U).

This, together with a conservative discretization leads to a consistent method.
A comparable criterion will be given for the multidimensional waves derived in Sections

3 and 4. With the same assumption as in 1-D, a uniform solution, the functionsR2, R1,
andL

¯
depend only on the state vectorU and decouple from the spatial variation which is

contained in theδ-function. The generalized structure of the waves is

Ui = R2 f u
i (Ui , Ex, 1t)

C+
i = R1 f c

i (Ui , Ex, 1t)

C−
i = L

¯
(Ui ) · Ef c

i (Ui , Ex, 1t)

for given functionsf u
i , f c

i , and Ef c
i .

SinceR2 andR1 are chosen such thatR2(U)+ R1(U) = U, a necessary condition is that
f u,c
i and Ef c

i build a decomposition of the state vectorU initially, i.e.,

f u,c
i (U, Ex, 0) =

{
1, Ex ∈ Vi and Ef c

i (U, Ex, 0) = 0.
0, else

To capture the steady constant solutionU(Ex, t) = U0 for all time, we need

∑
i

f u,c
i (U, Ex, t) = 1,

∑
i

Ef c
i (U, Ex, t) = 0.

Summation is over all cells and the conditions have to hold for allEx in the domain and for
all timest . This shows thatf u and f c need to be partitions of unity. There are two more
necessary assumptions that relate the waves to the physical flux.

(a) the centers of mass of the functionsf u, f c, and| Ef c| move with velocityEu, i.e.,

Esu,c
i (τ ) := 1

|Vi |
∫
RN

Ex f u,c
i (U, Ex, τ ) dEx = Esu,c

(0) + τ Eu(U)

Esc−
i (τ ) := 1

|Vi |
∫
RN

Ex∣∣ Ef c
i (U, Ex, τ )

∣∣ dEx = Esc−
(0) + τ Eu(U)
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(b) the integration ofEf c
along one of the cell normalsEk gives

∞∫
0

Ek · Ef c
( EU, Esc−

i (1t) + hEk, 1t) dh = 1tc.

The first point reflects the fact that the functionsf u,c and Ef c
have to follow the mean stream

velocity which is fulfilled by construction. All propagation processes in Section 2 have the
mean flow velocityEu as basic ingredient.

The second point determines the amplitude ofEf c
and thus the constantq in (21), since the

average ofEf c
always gives zero and cannot be used for this task. This amplitude is related

to the presssure part in the flux. Assuming piecewise constant data, the second acoustic
wave in (21) simplifies to

C−
i (Ex, t, 1t) = q

|S(1)|L(U) ·
∫

S(1)

∫
Vi

Enδ(Ex − 1t (Eu + Enc)) ds dEy.

Thus, for the derived methodEf c
has the form

Ef c
(U, Ex, τ ) = q

|S(1)|
∫

S(1)

∫
Vi

Enδ(Ex − τ(Eu + Enc)) ds dEy,

which in two space dimensions and in the domainG2.1 (see Fig. 7) reduces to

Ef c
(U, Ex, τ ) = q

2π

(√
1 − ( x−τu−xi +1/2

τc

)
0

)
.

Applying condition (b) withEk = (1, 0)T thex-coordinate axis, we get

∞∫
0

[ Ef c
]1(U, Esc

(τ ) + hEk, τ ) dh = q

2π
1tc

1∫
−1

√
1 − h2 dh = qπ1tc

2π

which shows thatq = 2 is the correct choice. ForN space dimensions, it turns out that
q = N is the proper choice which also fits forN = 1.

This condition implies that the generated numerical flux in the coordinate directions is
consistent with the physical flux, i.e., for two space dimensions withF

¯
= (F1, F2) we have

1t1yF1 = F1,3 + F0,3 + F5,3 − F2,0 − F3,0 − F4,0

1t1xF2 = F7,1 + F0,1 + F3,1 − F8,0 − F1,0 − F2,0.

Notation of the volumes and fluxes is as in Figs. 1 and 7.

6. MODIFIED WAVES

The disadvantage of the above approach is the large amount of computational work
necessary to compute the contributions. Figure 7 shows the support of the functionf c

and Ef c
which needs to be divided into a number of subdomains, each with a different
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FIG. 7. Support and subdomains for the functionsf c and Ef c
in (23).

representation of the functions. For convenience and to reduce the number of indices we
move to a local numeration of the domains. The control volumes are denoted byV0 for the
center cell with indices (i1, i2), V1 the upper cell (i1, i2 + 1) and the rest follow clockwise.
Note that in most of the previous equationsi denotes a multi-index.

The domainsG are ordered according to their complexity (in the first version). InG1

the function is constant, inG2 there is only one independent variable and inG3 and
G4 the functions depend on bothx1 and x2. Subsets are numbered clockwise such that
Gk = ⋃

i Gk.i .
Since the Monge cone enters into the propagation process (12) and (13) one can notice

the circular subdomains and intersections with rectangles. Even though the integration is
quite cumbersome, it can be done analytically. As an example, we give a representation of
f c for some subdomains:

f c =



1

π
arccos

(
x − 1tu − xi +1/2

1tc

)
if Ex ∈ G2.1

1

2π

(
arccos

(
x − 1tu − xi +1/2

1tc

)
+ arccos

(
y − 1tv − yj +1/2

1tc

)
− π

2

)
Ex ∈ G3.1

1

π

(
arccos

(
x − 1tu − xi +1/2

1tc

)
+ arccos

(
y − 1tv − yj +1/2

1tc

)
− π

)
Ex ∈ G4.1.

(23)

In this section for convenience we use the notationEx = (x, y)T and Eu = (u, v)T for the
space and velocity vectors.(xi +1/2, yj +1/2)

T denotes the upper right corner of a cell. Figure 8
shows one possible example for the computation of the contribution to one of the diagonal
neighbors.

The functionsf c and Ef c
are continuous with the direct consequence that the contribu-

tionsFc andFc− in (14) are differentiable. The wavef u is discontinuous with the resulting
contributionFu being only continuous. The influence of this non-differentiable flux is not
as severe and reflects the existence of a contact surface, which also only allows a continuous
flux.

The functionsf u and f c share the same properties for consistency. Thus, replacingf u

by f c in (23) leads to a consistent scheme with a differentiable flux.
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FIG. 8. Integration intervals and shape of domains to compute contributionFc
0,2.

Next, we derive functionsf c and Ef c
that are much simpler and will drastically reduce

the amount of computational work. In the spirit of the van Leer flux vector splitting, we use
ansatz functions that are piecewise constant, linear, or bilinear. The constraint, to build a
partition of unity, defines the functionf c completely. For example,

f c
i =


xi +1/2 + 1t (u + c) − x

21tc
if Ex ∈ G2.1

yi +1/2 + 1t (v + c) − y

21tc

xi +1/2 + 1t (u + c) − x

21tc
if Ex ∈ G3.1

(24)

is a linear function along the edges and bilinear near the corners. The function in the other
domainsG2.i can be found by symmetry arguments, and in the domainsG3.i they are the
product of the two functions in the adjacent domains. The second constraint on consistent
waves defines the functionEf c

. To keep the contributions differentiable we takef u = f c

as mentioned previously. Figure 9 shows the support for these choices of waves which are

FIG. 9. Support and subdomains for the functionsf c and Ef c
in (24).



                 

174 MICHAEL FEY

FIG. 10. Function f c in (24) for1t = 0.41x/c.

now all rectangles. Figure 10 sketches the shape off c. This defines a much simpler method
with all of the properties of the original version in (23).

Going even further and allowing only piecewise constant ansatz functions on rectangular
domains, i.e., the same decomposition of the support as in Fig. 9, leads to the following
representation off u and f c:

f u
i (Ui , Ex, t) =

{
1 if Ex − 1t Eu ∈ Vi

0 else
, f c

i (Ui , Ex, t) =


1 if Ex ∈ G1
1
2 if Ex ∈ G2
1
4 if Ex ∈ G3

0 else.

(25)

We omit the representation ofEf c
(for more details see [4, 6, 7]). This is the most efficient

method in terms of computational work. It is only 10–20% slower than a van Leer or Steger
Warming flux vector splitting method in the donor cell approach and equally fast in the
multiplicative operator splitting approach.

Note that for a grid aligned 1-D problem, the method withf in (24) is close to the van
Leer scheme whilef in (25) gives exactly the Steger–Warming splitting [19].

7. NUMERICAL EXPERIMENTS

The numerical methods derived in the previous section has been tested on a number of
problems. The three different versions led to no visible difference in the problems con-
sidered. Thus we will show only one of the results. To compare with existing methods,
solutions were computed using the Van Leer method with dimensional splitting. Since both
methods are of first order, there are only small differences in most of the examples with
weak shocks or rarefaction waves. For shock-shock interactions and strong oblique shocks,
larger differences can be recognized. Especially noticeable is the influence of numerical
viscosity generated by the dimensional splitting. We denote with (MoT) the derived method
of transport, and with (VL) the Van Leer flux vector splitting method.

The first example is a two-dimensional Riemann problem. As initial conditions, we
choose constant states in each quadrant. Neighboring quadrants are connected by a simple
wave, in this case by two slip lines and two rarefaction waves. The initial conditions are

ρ = 0.5197, p = 0.4, u = −0.6259, v = 0.1 if x < 0, y > 0
ρ = 0.8, p = 0.4, u = 0.1, v = 0.1 if x > 0, y > 0
ρ = 1.0, p = 1.0, u = 0.1, v = 0.1 if x < 0, y < 0
ρ = 0.5197, p = 0.4, u = 0.1, v = −0.6258 if x > 0, y < 0.
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FIG. 11. MoT, Min., 0.2795.

The Cartesian grid used has 400× 400 points. The shock thickness, in Figs. 11 and 12 for
the MoT and VL, is nearly the same.

The next example includes two weak shocks and two slip lines. The initial conditions are

ρ = 0.5313, p = 0.4, u = 0.0, v = 0.0 if x < 0, y > 0
ρ = 1.0, p = 1.0, u = 0.7276, v = 0.0 if x > 0, y > 0
ρ = 0.8, p = 1.0, u = 0.0, v = 0.0 if x < 0, y < 0
ρ = 1.0, p = 1.0, u = 0.0, v = 0.7276 ifx > 0, y < 0.

A second look at the results (Figs. 13, 14) shows differences in the structure of the shock.
The solution of the multidimensional method (Fig. 15) can be interpreted as two Mach
reflections and two contact surfaces at the intersection of the four shocks. VL shows one
curved shock connected with two others. The density contour lines are circular and the
gradient varies only slightly. In the solution of MoT a small density valley moves up to the
intersection point.

FIG. 12. VL, Min., 0.271.



        

176 MICHAEL FEY

FIG. 13. MoT, Max., 1.721.

There is no exact solution to this problem. However, a qualitative result can be obtained
using shock polars [1]. Since the solution is symmetric with respect to the linex = y and
self similar, the transformation

x′ = 1√
2
(x + y) + st, y′ = 1√

2
(y − x)

puts the shock-shock interaction point at rest, ifs is the speed of the shock between quadrant
1 and 3. Since the shock speed is determined from the one-dimensional problems, it is
constant in time. Hence, we can use the model of shock reflections as a first approximation.
It turns out that, for an angle of 45◦, there is no regular reflection. The highest possible
angle for these conditions is 40.8◦, with a density of 1.835 behind the reflected shock, i.e.,
a situation as in Fig. 14. Using the 45◦ angle of incidence, we obtain a Mach reflection with
a density of 1.66 behind the reflected shock and 1.52 behind the Mach stem [1]. This seems
to indicate that the solution obtained with VL is not well resolved for the same number of

FIG. 14. VL, Max., 1.820.
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FIG. 15. Enlargement for MoT and VL.

points as MoT that shows the proper behavior. Note that all high order methods produce a
result as in Fig. 13.

The spacing1ρ of the iso density contours in the first example (Figs. 11, 12) is1ρ = 0.02.
In the second example (Figs. 13–15) we used1ρ = 0.04.

The last two examples show steady shock reflections. First, we show the solution for the
weak Mach 1.4 shock in [3]. The domain is [−2, 2] × [0, 1] and we use 60× 20 points.
Figure 16 shows the density aty = 0.525. Note that the diamonds in Fig. 16 represent the
solution obtained by MoT and show a sharper shock profile than VL. This is surprising
since VL has less numerical viscosity than the Steger–Warming method. Figure 17 shows
the steady shock profile for the first jump if aligned with the grid. For this 1-D problem
MoT is more diffusive than VL as we would expect. This indicates that the dimensional
splitting approach introduces more numerical viscosity than the unsplit method.

The last problem includes a strong Mach 10 shock. The values of the analytic solution
are shown in Table 1. The domain in this problem is [−1.73, 4.07] × [0, 1] with a grid
120× 20 points. This puts the shock reflection point in (0, 0)T . The observed increase of

FIG. 16. Comparison of the density profile for the reflection problem along liney = 0.525; ♦, MoT; ◦, VL.
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FIG. 17. 1-D density profile for normal shock.

FIG. 18. Density profile for the Mach 10 reflection problem along liney = 0.525; ♦, MoT; ◦, VL.

FIG. 19. Density profile for the Mach 10 reflection problem along liney = 0.0; ♦, MoT; ◦, VL.
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TABLE 1

Quantity Left Middle Right

ρ 1.0 5.714285714285714 18.18385326582769
p 1.0 116.5 748.0377039786476
u 23.66431913239847 18.78355331134129 16.70442203362488
v 0.0 −8.453734381916670 1.8e-14

numerical viscosity for VL is more pronounced than in the previous example. Close to the
wall, the method is not able to recover the correct jump condition in a reasonable amount
of points. We observed the following difference between MoT and VL. Here, MoT shows
a much better behavior. The lack of stability for the donor cell approach shows up in this
example so that the time step has to be reduced. For comparison, both calculations were
done with the reduced time step. This is not necessary for MoT. The solution is the same,
even withCFL= 0.95. Since the methods used are of first order accuracy only, the obtained
results are not very conclusive. Note on the other hand that all high order methods that
use flux- or slope limiters reduce to a first order method close to discontinuities. Thus, a
better resolution of multidimensional effects is of importance even in the first order part.
The influence of the corner contributions is essential for a good representation of strong
shocks, as the last two examples indicate. They are of second order only in regions were
the solution is smooth.

8. CONCLUSIONS

The method of transport is described by means of the shift and average interpretation. For
the scalar equation, this truly multidimensional method can naturally be extended to any
order—in contrast to other approaches—where corrections are needed [3] or the structure
and velocities of high order waves need to be different from the first order waves [11].

For the case of the Euler equations, a new set of multidimensional waves has been
developed to model the physical properties of the linearized equations. Sufficient conditions
on the waves are given to ensure the consistency of the numerical method. Three possible
modifications have been given to improve some aspects of the original versions. The last
version in particular is competitive to other approaches.

Note thatR1, R2, andL
¯

are given functions ofU so that no Riemann problem solution is
required. This simplifies the extension to other systems and allows an application even to
those systems where the construction of Riemann solutions is difficult, i.e., in geometrical
optics or magneto hydrodynamics.

With this information, we are able to construct a mathematical formulation in [5] that
shows the extension to high order accurate methods.
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